

A198389


Square root of second term of a triple of squares in arithmetic progression.


5



5, 10, 13, 15, 17, 20, 25, 26, 25, 29, 30, 34, 37, 35, 41, 39, 40, 50, 45, 52, 51, 50, 61, 53, 55, 65, 58, 60, 65, 65, 65, 68, 75, 74, 85, 70, 82, 78, 73, 75, 80, 85, 85, 85, 89, 91, 101, 87, 100, 90, 113, 95, 104, 97, 102, 100, 111, 122, 106, 105, 123, 109
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A198385(n) = a(n)^2.
A198440(n) = a(A198409(n)).
Apart from its initial 1, A001653 is a subsequence: for all n>1 exists an m such that A198388(m)=1 and a(m)=A001653(n). [observed by Zak Seidov, Reinhard Zumkeller, Oct 25 2011]
There is a connection to hypotenuses of Pythagorean triangles. See a comment for the primitive case on A198441 which applies here mutatis mutandis.  Wolfdieter Lang, May 23 2013


LINKS

Ray Chandler, Table of n, a(n) for n = 1..10000
Reinhard Zumkeller, Table of initial values
Keith Conrad, Arithmetic progressions of three squares


EXAMPLE

Connection to Pythagorean triangle hypotenuses: a(20) = 10 because (in the notation of the Zumkeller link) (u,v,w) = 2*(1,5,7) and the Pythagorean triangle is 2*(x=(71)/2,y=(1+7)/2,5) = 2*(3,4,5) with hypotenuse 2*5 = 10.  Wolfdieter Lang, May 23 2013


PROG

(Haskell)
a198389 n = a198389_list !! (n1)
a198389_list = map (\(_, x, _) > x) ts where
ts = [(u, v, w)  w < [1..], v < [1..w1], u < [1..v1],
w^2  v^2 == v^2  u^2]


CROSSREFS

Sequence in context: A049197 A324928 A009000 * A057100 A304436 A009003
Adjacent sequences: A198386 A198387 A198388 * A198390 A198391 A198392


KEYWORD

nonn


AUTHOR

Reinhard Zumkeller, Oct 24 2011


STATUS

approved



