login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198361 Decimal expansion of least x having 4*x^2+3x=cos(x). 4
9, 1, 6, 1, 5, 1, 0, 6, 1, 0, 9, 6, 8, 3, 5, 7, 7, 0, 0, 0, 1, 3, 5, 0, 7, 2, 8, 0, 3, 9, 4, 6, 3, 9, 1, 8, 9, 1, 2, 6, 5, 1, 0, 6, 8, 0, 9, 3, 7, 1, 6, 1, 7, 1, 8, 8, 4, 2, 5, 1, 7, 8, 5, 3, 2, 1, 3, 7, 6, 0, 0, 8, 0, 0, 5, 1, 4, 4, 9, 3, 8, 7, 1, 5, 7, 8, 9, 2, 0, 1, 9, 0, 1, 3, 3, 8, 3, 9, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -0.91615106109683577000135072803946391...

greatest x: 0.244045322629135591466858282939448079493...

MATHEMATICA

a = 4; b = 3; c = 1;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -1, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]

RealDigits[r1] (* A198361 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .24, .25}, WorkingPrecision -> 110]

RealDigits[r2] (* A198362 *)

CROSSREFS

Cf. A197737.

Sequence in context: A161321 A090656 A058284 * A229156 A016579 A154011

Adjacent sequences:  A198358 A198359 A198360 * A198362 A198363 A198364

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 21 16:54 EST 2020. Contains 331114 sequences. (Running on oeis4.)