login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198360 Decimal expansion of greatest x having 4*x^2+2x=3*cos(x). 3
5, 8, 0, 4, 5, 7, 1, 2, 4, 4, 4, 5, 9, 3, 3, 1, 6, 1, 7, 9, 7, 2, 1, 9, 6, 5, 1, 4, 2, 8, 8, 1, 9, 0, 7, 5, 8, 9, 3, 8, 9, 8, 1, 1, 3, 7, 0, 7, 3, 9, 1, 2, 4, 9, 1, 2, 2, 4, 0, 8, 6, 1, 6, 7, 8, 2, 2, 5, 7, 9, 9, 5, 6, 9, 8, 9, 0, 1, 5, 7, 4, 9, 7, 7, 1, 6, 1, 8, 5, 9, 2, 6, 3, 4, 7, 2, 7, 3, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -0.95434777660875567212090095479339137329...

greatest x: 0.58045712444593316179721965142881907589...

MATHEMATICA

a = 4; b = 2; c = 3;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -1, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1, -.9}, WorkingPrecision -> 110]

RealDigits[r1] (* A198359 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .58, .59}, WorkingPrecision -> 110]

RealDigits[r2] (* A198360 *)

CROSSREFS

Cf. A197737.

Sequence in context: A154052 A181439 A011496 * A153420 A193505 A141848

Adjacent sequences:  A198357 A198358 A198359 * A198361 A198362 A198363

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 13:20 EST 2020. Contains 332044 sequences. (Running on oeis4.)