login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198357 Decimal expansion of least x having 4*x^2+2x=cos(x). 3
7, 4, 6, 0, 7, 4, 3, 6, 2, 1, 2, 8, 5, 6, 4, 4, 6, 1, 7, 3, 2, 5, 7, 4, 1, 8, 9, 8, 5, 6, 5, 3, 0, 6, 7, 3, 5, 6, 8, 5, 1, 9, 0, 1, 4, 6, 8, 5, 0, 2, 7, 8, 5, 6, 9, 0, 8, 2, 2, 9, 6, 4, 8, 7, 6, 6, 2, 2, 9, 3, 3, 0, 9, 6, 2, 0, 1, 6, 5, 1, 3, 7, 8, 3, 6, 3, 0, 2, 6, 7, 3, 7, 8, 0, 4, 5, 1, 1, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -0.7460743621285644617325741898565306735...

greatest x: 0.29900587455031735703746835072454193932...

MATHEMATICA

a = 4; b = 2; c = 1;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -1, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]

RealDigits[r1] (* A198357 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .29, .30}, WorkingPrecision -> 110]

RealDigits[r2] (* A198358 *)

CROSSREFS

Cf. A197737.

Sequence in context: A019899 A085662 A155684 * A240341 A011204 A154018

Adjacent sequences:  A198354 A198355 A198356 * A198358 A198359 A198360

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 24 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 22:20 EST 2019. Contains 329208 sequences. (Running on oeis4.)