login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198241 Decimal expansion of greatest x having 3*x^2+4x=3*cos(x). 3
4, 8, 6, 0, 0, 4, 4, 3, 5, 9, 9, 2, 2, 9, 3, 0, 4, 0, 8, 1, 6, 1, 9, 8, 9, 8, 1, 5, 0, 3, 5, 7, 8, 5, 6, 4, 6, 9, 2, 1, 1, 0, 8, 7, 9, 7, 3, 0, 9, 4, 7, 7, 4, 2, 5, 5, 3, 7, 9, 8, 3, 9, 2, 2, 9, 1, 8, 0, 2, 6, 8, 1, 9, 8, 3, 7, 6, 9, 9, 0, 9, 0, 6, 2, 7, 7, 5, 3, 7, 1, 6, 2, 9, 0, 0, 4, 5, 7, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -1.4308334207177285425665439336391388599...

greatest x: 0.48600443599229304081619898150357856...

MATHEMATICA

a = 3; b = 4; c = 3;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.4}, WorkingPrecision -> 110]

RealDigits[r1](* A198240 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .48, .49}, WorkingPrecision -> 110]

RealDigits[r2] (* A198241 *)

CROSSREFS

Cf. A197737.

Sequence in context: A276577 A011366 A005133 * A175475 A193082 A201335

Adjacent sequences:  A198238 A198239 A198240 * A198242 A198243 A198244

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 23 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 15 11:35 EST 2018. Contains 317238 sequences. (Running on oeis4.)