login
A198239
Decimal expansion of greatest x having 3*x^2+4x=2*cos(x).
3
3, 6, 6, 2, 4, 0, 8, 1, 5, 6, 6, 0, 4, 6, 3, 7, 1, 8, 3, 8, 4, 1, 5, 8, 1, 8, 8, 6, 9, 7, 6, 4, 4, 4, 0, 5, 4, 7, 4, 3, 1, 6, 0, 8, 8, 4, 0, 0, 7, 0, 5, 9, 1, 1, 9, 3, 7, 7, 4, 4, 5, 1, 4, 1, 3, 6, 4, 9, 0, 2, 2, 0, 6, 8, 1, 8, 3, 5, 2, 1, 5, 9, 0, 0, 0, 7, 9, 7, 9, 3, 0, 3, 4, 1, 8, 4, 5, 4, 4
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.40936392163577784477286936880153979511...
greatest x: 0.36624081566046371838415818869764440...
MATHEMATICA
a = 3; b = 4; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.4}, WorkingPrecision -> 110]
RealDigits[r1](* A198238 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .36, .37}, WorkingPrecision -> 110]
RealDigits[r2](* A198239 *)
CROSSREFS
Cf. A197737.
Sequence in context: A021736 A091478 A239567 * A086727 A309496 A021277
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved