login
A198231
Decimal expansion of greatest x having 3*x^2+3x=cos(x).
3
2, 5, 6, 5, 8, 4, 9, 3, 4, 2, 2, 3, 5, 6, 9, 4, 4, 0, 1, 5, 0, 4, 5, 7, 9, 4, 7, 4, 9, 9, 0, 9, 3, 5, 5, 9, 7, 4, 9, 3, 1, 3, 4, 1, 1, 9, 4, 6, 0, 6, 7, 2, 9, 3, 7, 2, 5, 2, 0, 1, 7, 4, 8, 4, 7, 5, 7, 2, 0, 4, 3, 3, 0, 3, 2, 9, 1, 8, 9, 9, 0, 1, 8, 4, 9, 6, 1, 4, 3, 3, 4, 1, 3, 0, 9, 1, 2, 6, 9
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.1269965961113996583452373843254048549...
greatest x: 0.25658493422356944015045794749909355...
MATHEMATICA
a = 3; b = 3; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r1] (* A198230 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .25, .26}, WorkingPrecision -> 110]
RealDigits[r2] (* A198231 *)
CROSSREFS
Cf. A197737.
Sequence in context: A103989 A239049 A161017 * A272207 A372322 A155947
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved