login
A198230
Decimal expansion of least x having 3*x^2+3x=cos(x).
3
1, 1, 2, 6, 9, 9, 6, 5, 9, 6, 1, 1, 1, 3, 9, 9, 6, 5, 8, 3, 4, 5, 2, 3, 7, 3, 8, 4, 3, 2, 5, 4, 0, 4, 8, 5, 4, 9, 3, 7, 7, 7, 1, 3, 8, 6, 4, 4, 6, 8, 9, 1, 7, 0, 7, 6, 6, 3, 8, 2, 1, 6, 3, 8, 9, 7, 3, 2, 5, 0, 6, 1, 3, 0, 0, 6, 9, 5, 4, 3, 3, 5, 9, 8, 1, 1, 2, 2, 2, 6, 6, 1, 7, 3, 1, 2, 1, 7, 5
OFFSET
1,3
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.126996596111399658345237384325404854...
greatest x: 0.2565849342235694401504579474990935...
MATHEMATICA
a = 3; b = 3; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110]
RealDigits[r1] (* A198230 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .25, .26}, WorkingPrecision -> 110]
RealDigits[r2] (* A198231 *)
CROSSREFS
Cf. A197737.
Sequence in context: A175030 A335027 A263178 * A263495 A282079 A268677
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 23 2011
STATUS
approved