login
A198225
Decimal expansion of greatest x having 3*x^2+2x=2*cos(x).
3
5, 0, 0, 8, 6, 6, 3, 1, 0, 2, 5, 3, 0, 1, 1, 7, 6, 9, 7, 9, 0, 8, 0, 2, 7, 5, 4, 6, 9, 4, 6, 5, 6, 3, 3, 0, 3, 2, 1, 5, 5, 6, 9, 7, 4, 9, 5, 5, 9, 5, 6, 2, 7, 5, 7, 4, 5, 2, 1, 3, 3, 0, 3, 1, 2, 7, 4, 0, 4, 8, 0, 4, 4, 3, 8, 4, 7, 3, 5, 1, 5, 1, 5, 2, 3, 9, 2, 8, 1, 5, 2, 3, 5, 5, 3, 9, 3, 0, 5
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.014060582687901072214777706552979973...
greatest x: 0.500866310253011769790802754694656330...
MATHEMATICA
a = 3; b = 2; c = 2;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.02, -1.01}, WorkingPrecision -> 110]
RealDigits[r1] (* A198224 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .5, .51}, WorkingPrecision -> 110]
RealDigits[r2] (* A198225 *)
CROSSREFS
Cf. A197737.
Sequence in context: A263496 A308224 A200630 * A256929 A068459 A099222
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved