login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198221 Decimal expansion of greatest x having 3*x^2+x=4*cos(x). 3
8, 0, 7, 6, 7, 8, 4, 8, 2, 4, 2, 7, 2, 1, 0, 6, 5, 0, 9, 1, 8, 0, 5, 7, 2, 1, 3, 0, 7, 8, 3, 7, 5, 6, 6, 3, 5, 0, 3, 8, 6, 6, 3, 6, 1, 6, 6, 1, 1, 3, 0, 6, 4, 0, 9, 0, 6, 6, 7, 9, 8, 0, 4, 1, 2, 7, 9, 3, 8, 4, 5, 9, 3, 1, 7, 3, 4, 2, 5, 1, 7, 7, 5, 5, 3, 8, 9, 7, 0, 5, 9, 1, 5, 1, 4, 1, 2, 1, 4 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -1.0190925028154180679841791260898590369...

greatest x: 0.807678482427210650918057213078375663...

MATHEMATICA

a = 3; b = 1; c = 4;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.1, -1}, WorkingPrecision -> 110]

RealDigits[r1] (* A198220 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]

RealDigits[r2] (* A198221 *)

CROSSREFS

Cf. A197737.

Sequence in context: A306071 A201321 A245737 * A183001 A262522 A174849

Adjacent sequences:  A198218 A198219 A198220 * A198222 A198223 A198224

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 19:49 EDT 2019. Contains 322446 sequences. (Running on oeis4.)