login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198220 Decimal expansion of least x having 3*x^2+x=4*cos(x). 3
1, 0, 1, 9, 0, 9, 2, 5, 0, 2, 8, 1, 5, 4, 1, 8, 0, 6, 7, 9, 8, 4, 1, 7, 9, 1, 2, 6, 0, 8, 9, 8, 5, 9, 0, 3, 6, 9, 6, 2, 2, 3, 0, 4, 4, 2, 0, 6, 4, 4, 7, 2, 2, 9, 4, 8, 2, 0, 6, 4, 1, 7, 4, 3, 6, 4, 6, 3, 9, 2, 2, 2, 2, 2, 8, 3, 2, 4, 7, 7, 8, 9, 1, 6, 3, 7, 3, 7, 3, 9, 3, 4, 6, 3, 8, 0, 8, 7, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least x: -1.0190925028154180679841791260898590369...

greatest x: 0.807678482427210650918057213078375663...

MATHEMATICA

a = 3; b = 1; c = 4;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.1, -1}, WorkingPrecision -> 110]

RealDigits[r1] (* A198220 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .8, .9}, WorkingPrecision -> 110]

RealDigits[r2] (* A198221 *)

CROSSREFS

Cf. A197737.

Sequence in context: A010680 A248724 A278144 * A131566 A264156 A160576

Adjacent sequences:  A198217 A198218 A198219 * A198221 A198222 A198223

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 8 00:38 EST 2021. Contains 341934 sequences. (Running on oeis4.)