login
A198215
Decimal expansion of greatest x having 3*x^2+x=cos(x).
3
4, 1, 0, 7, 3, 0, 5, 6, 8, 1, 0, 5, 3, 1, 9, 6, 7, 8, 8, 4, 2, 6, 1, 6, 3, 2, 1, 6, 8, 8, 4, 2, 9, 3, 2, 6, 3, 7, 9, 5, 7, 1, 5, 3, 6, 1, 1, 2, 5, 4, 5, 5, 4, 5, 6, 9, 4, 6, 9, 7, 5, 4, 1, 5, 7, 2, 2, 8, 2, 7, 3, 8, 9, 2, 4, 0, 5, 3, 7, 7, 8, 6, 8, 6, 6, 3, 0, 0, 5, 0, 5, 8, 3, 1, 8, 5, 8, 0, 6
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.6986567055323602628379046584016603229...
greatest x: 0.41073056810531967884261632168842932...
MATHEMATICA
a = 3; b = 1; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.7, -0.6}, WorkingPrecision -> 110]
RealDigits[r1] (* A198214 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 4.1, 4.2}, WorkingPrecision -> 110]
RealDigits[r2] (* A198215 *)
CROSSREFS
Cf. A197737.
Sequence in context: A255331 A296794 A119305 * A062175 A085659 A245099
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved