login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198200 G.f.: q-cosh(x,q)^2 - q-sinh(x,q)^2 at q=-x. 6
1, 0, 1, 2, 3, 6, 10, 16, 28, 48, 79, 130, 215, 356, 587, 960, 1566, 2558, 4176, 6804, 11066, 17978, 29198, 47406, 76916, 124716, 202152, 327600, 530775, 859734, 1392265, 2254336, 3649840, 5908632, 9564377, 15480706, 25055322, 40549980, 65624224, 106199306, 171856555, 278099872 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

This sequence illustrates in part the identities:

* q-cosh(x,q)^2 - q-sinh(x,q)^2 = e_q(x,q) / E_q(x,q),

* q-Cosh(x,q)^2 - q-Sinh(x,q)^2 = E_q(x,q) / e_q(x,q).

Here the following q-analogs are employed (see MathWorld links):

q-cosh(x,q) = Sum_{n>=0} x^(2*n)/faq(2*n,q),

q-sinh(x,q) = Sum_{n>=0} x^(2*n+1)/faq(2*n+1,q),

and the dual expressions:

q-Cosh(x,q) = Sum_{n>=0} q^(n*(2*n-1))*x^(2*n)/faq(2*n,q),

q-Sinh(x,q) = Sum_{n>=0} q^(n*(2*n+1))*x^(2*n+1)/faq(2*n+1,q),

along with the dual q-exponential functions of x:

e_q(x,q) = Sum_{n>=0} x^n/faq(n,q),

E_q(x,q) = Sum_{n>=0} q^(n*(n-1)/2) * x^n/faq(n,q),

where

faq(n,q) = Product_{k=1..n} (q^k-1)/(q-1) is the q-factorial of n.

LINKS

Table of n, a(n) for n=0..41.

Eric Weisstein, q-Exponential Function from MathWorld.

Eric Weisstein, q-Cosine Function from MathWorld.

Eric Weisstein, q-Sine Function from MathWorld.

Eric Weisstein, q-Factorial Function from MathWorld.

FORMULA

(1) G.f.: e_q(x,q) / E_q(x,q) at q=-x, where

e_q(x,-x) = Sum_{n>=0} x^n/Product_{k=1..n} (1-(-x)^k)/(1+x)),

E_q(x,-x) = Sum_{n>=0} (-x)^(n*(n-1)/2) * x^n/Product_{k=1..n} (1-(-x)^k)/(1+x)).

(2) G.f.: exp( Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n ).

(3) G.f.: Product_{n>=1} 1/(1 - x^(2*n)*(1+x)^2).

(4) Limit a(n+1)/a(n) = phi = (sqrt(5)+1)/2 with Limit a(n)/phi^n = 0.75149846280232258786564518960536101986114488526276981847216113150440...

EXAMPLE

G.f.: A(x) = 1 + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 10*x^6 + 16*x^7 + 28*x^8 +...

The g.f. may be expressed by:

(0) A(x) = q-cosh(x,q)^2 - q-sinh(x,q)^2 at q=-x, where

q-cosh(x,-x) = 1 + x^2 + x^3 + 2*x^4 + 4*x^5 + 6*x^6 + 9*x^7 + 15*x^8 + 25*x^9 + 41*x^10 + 66*x^11 + 105*x^12 +...

q-sinh(x,-x) = x + x^3 + 2*x^4 + 3*x^5 + 5*x^6 + 8*x^7 + 13*x^8 + 23*x^9 + 39*x^10 + 62*x^11 + 99*x^12 +...

q-cosh(x,-x)^2 = 1 + 2*x^2 + 2*x^3 + 5*x^4 + 10*x^5 + 17*x^6 + 30*x^7 + 54*x^8 + 96*x^9 + 170*x^10 + 296*x^11 + 510*x^12 +...

q-sinh(x,-x)^2 = x^2 + 2*x^4 + 4*x^5 + 7*x^6 + 14*x^7 + 26*x^8 + 48*x^9 + 91*x^10 + 166*x^11 + 295*x^12 +...

(1) A(x) = e_q(x,q) / E_q(x,q) at q=-x, where

e_q(x,-x) = 1 + x + x^2 + 2*x^3 + 4*x^4 + 7*x^5 + 11*x^6 + 17*x^7 + 28*x^8 + 48*x^9 + 80*x^10 + 128*x^11 + 204*x^12 +...

E_q(x,-x) = 1 + x - x^3 - x^4 - x^5 - 2*x^6 - 3*x^7 - 3*x^8 - 2*x^9 + 2*x^11 + 2*x^12 +...

(2) log(A(x)) = (1+x)^2/(1-x^2)*x^2 + (1+x)^4/(1-x^4)*x^4/2 + (1+x)^6/(1-x^6)*x^6/3 + (1+x)^8/(1-x^8)*x^8/4 +...

(3) A(x) = 1/((1 - x^2*(1+x)^2) * (1 - x^4*(1+x)^2) * (1 - x^6*(1+x)^2) * (1 - x^8*(1+x)^2) * (1 - x^10*(1+x)^2) *...).

PROG

(PARI) /* (0) G.f. q-cosh(x, q)^2 - q-sinh(x, q)^2 at q=-x: */

{a(n)=local(cosh_q=sum(k=0, n, x^(2*k)/(prod(j=1, 2*k, (1-(-x)^j)/(1+x))+x*O(x^n))), sinh_q=sum(k=0, n, x^(2*k+1)/(prod(j=1, 2*k+1, (1-(-x)^j)/(1+x))+x*O(x^n)))); polcoeff(cosh_q^2-sinh_q^2, n)}

(PARI) /* (1) G.f. e_q(x, q) / E_q(x, q) at q=-x: */

{a(n)=local(e_q=sum(k=0, n, x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n))), E_q=sum(k=0, n, (-x)^(k*(k-1)/2)*x^k/(prod(j=1, k, (1-(-x)^j)/(1+x))+x*O(x^n)))); polcoeff(e_q/E_q, n)}

(PARI) /* (1) G.f. e_q(x, q) / E_q(x, q) at q=-x: */

{a(n)=local(e_q=exp(sum(k=1, n, x^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n)), E_q=exp(sum(k=1, n, -(-x)^k*(1+x)^k/(1-(-x)^k)/k)+x*O(x^n))); polcoeff(e_q/E_q, n)}

(PARI) /* (2) G.f. exp( Sum_{n>=1} (1+x)^(2*n)/(1-x^(2*n)) * x^(2*n)/n): */

{a(n)=polcoeff( exp( sum(m=1, n\2+1, (1+x)^(2*m)/(1-x^(2*m)+x*O(x^n))*x^(2*m)/m)), n)}

(PARI) /* (3) G.f. Product_{n>=1} 1/(1 - x^(2*n)*(1+x)^2): */

{a(n)=polcoeff(1/prod(k=1, n, 1-(1+x)^2*x^(2*k)+x*O(x^n)), n)}

CROSSREFS

Cf. A198199 (dual), A152398 (e_q), A198197 (E_q), A198201 (q-cosh), A198202 (q-sinh), A198242 (q-Cosh), A198243 (q-Sinh).

Sequence in context: A243735 A034419 A201864 * A294444 A066895 A105075

Adjacent sequences:  A198197 A198198 A198199 * A198201 A198202 A198203

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Oct 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 06:08 EDT 2020. Contains 337289 sequences. (Running on oeis4.)