login
A198148
a(n) = n*(n+2)*(9 - 7*(-1)^n)/16.
4
0, 3, 1, 15, 3, 35, 6, 63, 10, 99, 15, 143, 21, 195, 28, 255, 36, 323, 45, 399, 55, 483, 66, 575, 78, 675, 91, 783, 105, 899, 120, 1023, 136, 1155, 153, 1295, 171, 1443, 190, 1599, 210, 1763, 231, 1935, 253, 2115, 276, 2303, 300, 2499, 325
OFFSET
0,2
COMMENTS
See, in A181318(n), A060819(n)*A060819(n+p): A060819(n)^2, A064038(n), a(n), A160050(n), A061037(n), A178242(n). The second differences a(n+2)-2*a(n+1)+a(n) = -5, 16, -26, 44, -61, 86, -110, 142, -173, 212, -250, 296, -341, 394, -446, 506, taken modulo 9 are periodic with the palindromic period 4, 7, 1, 8, 2, 5, 7, 7, 7, 5, 2, 8, 1, 7, 4.
FORMULA
a(n) = A060819(n)*A060819(n+2).
a(2n) = n*(n+1)/2 = A000217(n).
a(2n+1) = (2*n+1)*(2*n+3) = A000466(n+1).
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6), n>5.
a(n+1) - a(n) = (7*(-1)^n *(2*n^2+6*n+3) +18*n +27)/16.
a(n) = A142705(n) / A000034(n+1).
a(n) = A005563(n) / A010689(n+1). - Franklin T. Adams-Watters, Oct 21 2011
G.f. x*(3 +x +6*x^2 -x^4)/(1-x^2)^3. - R. J. Mathar, Oct 25 2011
a(n)*a(n+1) = a(A028552(n)) = A050534(n+2). - Bruno Berselli, Oct 26 2011
a(n) = numerator( binomial((n+2)/2,2) ). - Wesley Ivan Hurt, Oct 16 2013
E.g.f.: x*((24+x)*cosh(x) + (3+8*x)*sinh(x))/8. - G. C. Greubel, Sep 20 2018
Sum_{n>=1} 1/a(n) = 5/2. - Amiram Eldar, Aug 12 2022
MAPLE
A198148:=n->n*(n+2)*(9-7*(-1)^n)/16; seq(A198148(k), k=0..100); # Wesley Ivan Hurt, Oct 16 2013
MATHEMATICA
LinearRecurrence[{0, 3, 0, -3, 0, 1}, {0, 3, 1, 15, 3, 35}, 60] (* Vincenzo Librandi, Nov 25 2011 *)
PROG
(Magma) [n*(n+2)*(9-7*(-1)^n)/16: n in [0..60]]; // Vincenzo Librandi, Nov 25 2011
(PARI) a(n)=n*(n+2)*(9-7*(-1)^n)/16 \\ Charles R Greathouse IV, Oct 16 2015
(Sage) [n*(n+2)*(9-7*(-1)^n)/16 for n in (0..60)] # G. C. Greubel, Feb 21 2019
(GAP) List([0..60], n -> n*(n+2)*(9-7*(-1)^n)/16) # G. C. Greubel, Feb 21 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Curtz, Oct 21 2011
STATUS
approved