login
A198136
Decimal expansion of least x having 2*x^2-4x=-3*cos(x).
3
8, 5, 8, 7, 6, 9, 7, 1, 3, 6, 9, 7, 6, 1, 4, 4, 2, 1, 1, 9, 3, 1, 0, 4, 3, 2, 1, 8, 1, 0, 5, 3, 3, 0, 8, 6, 1, 1, 8, 5, 6, 5, 7, 7, 3, 4, 6, 8, 7, 1, 4, 7, 4, 5, 8, 5, 1, 7, 3, 6, 1, 6, 4, 0, 8, 0, 2, 9, 2, 2, 0, 6, 4, 7, 4, 8, 6, 2, 6, 4, 9, 1, 8, 0, 5, 9, 3, 4, 3, 9, 1, 7, 6, 5, 9, 0, 5, 9, 9
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.85876971369761442119310432181053308611...
greatest x: 2.4766169740668170810192726417322477...
MATHEMATICA
a = 2; b = -4; c = -3;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 3}]
r1 = x /. FindRoot[f[x] == g[x], {x, .85, .86}, WorkingPrecision -> 110]
RealDigits[r1] (* A198136 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 2.4, 2.5}, WorkingPrecision -> 110]
RealDigits[r2] (* A198137 *)
CROSSREFS
Cf. A197737.
Sequence in context: A200134 A021542 A336058 * A328942 A308743 A305582
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved