login
A198129
Decimal expansion of greatest x having 2*x^2+3x=cos(x).
3
1, 5, 1, 7, 5, 3, 8, 9, 8, 0, 6, 6, 1, 4, 8, 2, 2, 4, 4, 8, 3, 2, 7, 4, 6, 9, 8, 6, 3, 9, 0, 8, 1, 1, 5, 0, 8, 0, 9, 9, 5, 0, 7, 1, 0, 7, 8, 4, 5, 4, 2, 2, 8, 5, 8, 6, 9, 0, 1, 4, 6, 0, 6, 0, 6, 1, 6, 8, 2, 6, 6, 7, 2, 5, 9, 4, 1, 1, 6, 4, 7, 4, 3, 7, 3, 9, 2, 5, 7, 7, 1, 3, 3, 9, 9, 5, 0, 6, 7
OFFSET
0,2
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -1.51753898066148224483274698639081150...
greatest x: 0.271831851895805907186882033358839...
MATHEMATICA
a = 2; b = 3; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.52, -1.51}, WorkingPrecision -> 110]
RealDigits[r1](* A198128 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .27, .28}, WorkingPrecision -> 110]
RealDigits[r2](* A198129 *)
CROSSREFS
Cf. A197737.
Sequence in context: A370516 A021663 A099218 * A244425 A332343 A035109
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 22 2011
STATUS
approved