login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198126 Decimal expansion of least x having 2*x^2+2x=3*cos(x). 3
1, 3, 0, 3, 6, 8, 8, 2, 3, 6, 0, 8, 2, 7, 3, 1, 2, 3, 6, 1, 5, 7, 9, 4, 2, 3, 4, 9, 2, 0, 1, 7, 3, 1, 5, 8, 1, 7, 1, 3, 6, 6, 2, 5, 6, 7, 7, 7, 5, 0, 6, 2, 3, 8, 8, 1, 7, 3, 8, 3, 0, 4, 5, 9, 1, 1, 6, 0, 2, 7, 0, 3, 4, 3, 4, 5, 4, 9, 4, 8, 7, 8, 0, 3, 8, 4, 4, 5, 0, 8, 7, 1, 0, 4, 7, 6, 8, 2, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=1..99.

EXAMPLE

least x: -1.303688236082731236157942349201731581...

greatest x: 0.68722829225254885401536676699761905...

MATHEMATICA

a = 2; b = 2; c = 3;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -2, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -1.31, -1.30}, WorkingPrecision -> 110]

RealDigits[r1] (* A198126 *)

r2 = x /. FindRoot[f[x] == g[x], {x, .68, .69}, WorkingPrecision -> 110]

RealDigits[r2] (* A198127 *)

CROSSREFS

Cf. A197737.

Sequence in context: A038517 A055949 A165012 * A074694 A127803 A021771

Adjacent sequences:  A198123 A198124 A198125 * A198127 A198128 A198129

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 22 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 24 07:18 EST 2020. Contains 331189 sequences. (Running on oeis4.)