This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198125 Decimal expansion of greatest x having 2*x^2+2x=cos(x). 3
 3, 4, 8, 4, 9, 5, 0, 4, 8, 1, 7, 3, 8, 4, 2, 9, 1, 6, 5, 5, 6, 6, 8, 4, 1, 8, 4, 7, 1, 9, 9, 0, 5, 9, 9, 3, 9, 6, 1, 7, 9, 0, 4, 1, 3, 8, 9, 4, 7, 5, 1, 8, 9, 5, 3, 6, 0, 4, 1, 6, 1, 8, 2, 0, 6, 2, 1, 8, 2, 5, 6, 7, 0, 2, 6, 2, 9, 1, 6, 0, 5, 9, 4, 5, 9, 2, 4, 8, 6, 5, 3, 5, 4, 0, 3, 6, 1, 8, 4 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS See A197737 for a guide to related sequences.  The Mathematica program includes a graph. LINKS EXAMPLE least x: -1.1678731527385671979308122427699630... greatest x: 0.34849504817384291655668418471990... MATHEMATICA a = 2; b = 2; c = 1; f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x] Plot[{f[x], g[x]}, {x, -2, 1}] r1 = x /. FindRoot[f[x] == g[x], {x, -1.2, -1.1}, WorkingPrecision -> 110] RealDigits[r1](* A198124 *) r2 = x /. FindRoot[f[x] == g[x], {x, .34, .35}, WorkingPrecision -> 110] RealDigits[r2](* A198125 *) CROSSREFS Cf. A197737. Sequence in context: A020812 A021291 A179104 * A127122 A086850 A050274 Adjacent sequences:  A198122 A198123 A198124 * A198126 A198127 A198128 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 22 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .