

A198120


Decimal expansion of least x having 2*x^23x=cos(x).


3



4, 2, 3, 4, 1, 8, 8, 6, 7, 4, 3, 6, 9, 5, 6, 3, 9, 0, 2, 5, 4, 9, 0, 1, 9, 1, 4, 5, 6, 7, 1, 3, 7, 9, 8, 7, 7, 8, 8, 8, 1, 6, 9, 1, 7, 2, 9, 9, 4, 8, 0, 6, 3, 4, 0, 9, 5, 8, 5, 0, 6, 3, 0, 6, 0, 5, 6, 7, 1, 3, 8, 3, 3, 0, 6, 0, 1, 9, 8, 2, 1, 5, 8, 2, 0, 6, 1, 7, 4, 1, 3, 1, 2, 5, 8, 5, 7, 1, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

See A197737 for a guide to related sequences. The Mathematica program includes a graph.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

least x: 0.42341886743695639025490191456713...
greatest x: 1.46336282729643114510529642616...


MATHEMATICA

a = 2; b = 3; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, 1, 2}]
r1 = x /. FindRoot[f[x] == g[x], {x, .43, .42}, WorkingPrecision > 110]
RealDigits[r1](* A198120 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision > 110]
RealDigits[r2](* A198121 *)


CROSSREFS

Cf. A197737.
Sequence in context: A016692 A183993 A184403 * A001390 A180343 A225001
Adjacent sequences: A198117 A198118 A198119 * A198121 A198122 A198123


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 21 2011


STATUS

approved



