login
A198120
Decimal expansion of least x having 2*x^2-3x=-cos(x).
3
4, 2, 3, 4, 1, 8, 8, 6, 7, 4, 3, 6, 9, 5, 6, 3, 9, 0, 2, 5, 4, 9, 0, 1, 9, 1, 4, 5, 6, 7, 1, 3, 7, 9, 8, 7, 7, 8, 8, 8, 1, 6, 9, 1, 7, 2, 9, 9, 4, 8, 0, 6, 3, 4, 0, 9, 5, 8, 5, 0, 6, 3, 0, 6, 0, 5, 6, 7, 1, 3, 8, 3, 3, 0, 6, 0, 1, 9, 8, 2, 1, 5, 8, 2, 0, 6, 1, 7, 4, 1, 3, 1, 2, 5, 8, 5, 7, 1, 2
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: 0.42341886743695639025490191456713...
greatest x: 1.46336282729643114510529642616...
MATHEMATICA
a = 2; b = -3; c = -1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 2}]
r1 = x /. FindRoot[f[x] == g[x], {x, -.43, -.42}, WorkingPrecision -> 110]
RealDigits[r1](* A198120 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 1.4, 1.5}, WorkingPrecision -> 110]
RealDigits[r2](* A198121 *)
CROSSREFS
Cf. A197737.
Sequence in context: A016692 A183993 A184403 * A001390 A180343 A332273
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved