login
This site is supported by donations to The OEIS Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198113 Decimal expansion of greatest x having 2*x^2+x=cos(x). 3
4, 6, 3, 9, 0, 2, 3, 8, 2, 5, 9, 7, 4, 1, 1, 9, 0, 9, 7, 5, 6, 7, 0, 3, 1, 6, 9, 5, 3, 5, 3, 5, 0, 5, 8, 9, 7, 2, 0, 7, 5, 7, 5, 8, 2, 7, 1, 2, 0, 1, 4, 2, 0, 1, 5, 3, 6, 2, 2, 5, 6, 8, 9, 2, 6, 5, 2, 5, 9, 5, 3, 1, 9, 5, 9, 9, 6, 0, 9, 6, 9, 0, 7, 4, 0, 1, 1, 9, 4, 4, 2, 7, 3, 8, 0, 3, 6, 9, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A197737 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least x: -0.870316341177487538672405292348150615...

greatest x: 0.463902382597411909756703169535350589...

MATHEMATICA

a = 2; b = 1; c = 1;

f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]

Plot[{f[x], g[x]}, {x, -1, 1}]

r1 = x /. FindRoot[f[x] == g[x], {x, -0.88, -0.87}, WorkingPrecision -> 110]

RealDigits[r1](* A198112 *)

r2 = x /.FindRoot[f[x] == g[x], {x, 4.6, 4.7}, WorkingPrecision -> 110]

RealDigits[r2](* A198113 *)

CROSSREFS

Cf. A197737.

Sequence in context: A273819 A276761 A073000 * A264962 A082193 A255767

Adjacent sequences:  A198110 A198111 A198112 * A198114 A198115 A198116

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 21 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 19 18:20 EST 2019. Contains 319309 sequences. (Running on oeis4.)