login
A198103
Decimal expansion of greatest x having x^2+3x=cos(x).
3
2, 9, 1, 0, 7, 1, 4, 5, 0, 7, 8, 0, 6, 0, 3, 8, 0, 1, 0, 1, 1, 7, 6, 6, 1, 0, 6, 4, 0, 7, 3, 1, 2, 3, 6, 7, 5, 1, 5, 8, 0, 0, 4, 9, 7, 9, 8, 4, 2, 5, 2, 5, 1, 5, 1, 1, 7, 9, 3, 5, 2, 7, 6, 7, 8, 3, 8, 3, 5, 7, 4, 7, 1, 7, 3, 1, 6, 3, 6, 6, 6, 3, 3, 9, 9, 9, 1, 3, 2, 3, 0, 2, 6, 2, 3, 2, 6, 4, 1
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -2.666509821525421471192909881243565...
greatest x: 0.2910714507806038010117661064073...
MATHEMATICA
a = 1; b = 3; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -3, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -3, -2}, WorkingPrecision -> 110]
RealDigits[r1] (* A198102 *)
r2 = x /. FindRoot[f[x] == g[x], {x, .29, .3}, WorkingPrecision -> 110]
RealDigits[r2] (* A198103 *)
CROSSREFS
Cf. A197737.
Sequence in context: A272003 A128892 A187556 * A105548 A153093 A094242
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved