login
A198097
n such that d(1)*1! + d(2)*2! + ... + d(k)*k! is a perfect square, where d(i) are the decimal digits of n.
1
1, 4, 9, 10, 14, 21, 27, 33, 40, 46, 52, 65, 71, 79, 84, 90, 98, 100, 104, 108, 111, 133, 137, 140, 162, 166, 191, 195, 210, 212, 225, 241, 249, 254, 270, 278, 283, 301, 323, 327, 330, 352, 356, 381, 385, 400, 402, 415, 431, 439, 444, 460, 468, 473, 497, 513
OFFSET
1,2
COMMENTS
A198095 is included in this sequence.
If n is in the sequence, then so is 10*n. - Robert Israel, Aug 16 2020
LINKS
EXAMPLE
137 is in the sequence because 1*1! + 3*2! + 7*3! = 1 + 6 + 42 = 7^2.
MAPLE
for n from 1 to 520 do :l:=length(n):n0:=n:s:=0:for m from l by -1 to 1 do:q:=n0:u:=irem(q, 10):v:=iquo(q, 10):n0:=v :s:=s+u*m!:od: z:=sqrt(s):if z=floor(z) then printf(`%d, `, n):else fi:od:
# Simpler:
filter:= proc(n)
local L, k;
L:= convert(n, base, 10);
issqr(add(L[-k]*k!, k=1..nops(L)))
end proc:
select(filter, [$1..1000]); # Robert Israel, Aug 16 2020
CROSSREFS
Sequence in context: A243170 A356711 A054294 * A358762 A157908 A064973
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Oct 21 2011
STATUS
approved