|
|
A198080
|
|
a(n) = (3^(3*n + 3)- 26*n - 27)/169.
|
|
1
|
|
|
0, 4, 116, 3144, 84904, 2292428, 61895580, 1671180688, 45121878608, 1218290722452, 32893849506244, 888133936668632, 23979616290053112, 647449639831434076, 17481140275448720108, 471990787437115442976, 12743751260802116960416, 344081284041657157931300
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Second differences are four times the entries of A009971. - R. J. Mathar, Oct 25 2011
|
|
LINKS
|
Vincenzo Librandi, Table of n, a(n) for n = 0..700
Index entries for linear recurrences with constant coefficients, signature (29,-55,27).
|
|
FORMULA
|
a(n) = (3^(3*n + 3) - 26*n - 27)/169.
G.f.: -4*x / ( (27*x-1)*(x-1)^2 ). - R. J. Mathar, Oct 25 2011
|
|
EXAMPLE
|
a(1) = (3^(3 + 3) - 26 - 27)/169 = 676/169 = 4.
|
|
MAPLE
|
for n from 0 to 30 do:x:=(3^(3*n+3) - 26*n - 27)/169 : printf(`%d, `, x):od:
|
|
MATHEMATICA
|
LinearRecurrence[{29, -55, 27}, {0, 4, 116}, 50] (* Vincenzo Librandi, Nov 25 2011 *)
|
|
PROG
|
(MAGMA) I:=[0, 4, 116]; [n le 3 select I[n] else 29*Self(n-1)-55*Self(n-2)+27*Self(n-3): n in [1..20]]; // Vincenzo Librandi, Nov 25 2011
(PARI) a(n)=(3^(3*n+3)-26*n-27)/169 \\ Charles R Greathouse IV, Jul 06 2017
|
|
CROSSREFS
|
Sequence in context: A080482 A340277 A206689 * A272158 A194535 A030255
Adjacent sequences: A198077 A198078 A198079 * A198081 A198082 A198083
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Michel Lagneau, Oct 24 2011
|
|
STATUS
|
approved
|
|
|
|