This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A198069 Table read by rows, T(0,0) = 1 and for n>0, 0<=k<=2^(n-1) T(n,k) = gcd(k,2^(n-1)). 5
 1, 1, 1, 2, 1, 2, 4, 1, 2, 1, 4, 8, 1, 2, 1, 4, 1, 2, 1, 8, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 32, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 32, 64, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Reinhard Zumkeller, Rows n = 0..13 of triangle, flattened FORMULA For n > 0: Let S be the n-th row, S' = replace the initial term by its double, then row (n+1) = concatenation of S' and the reverse of S' without the initial term. - Reinhard Zumkeller, May 26 2013 EXAMPLE 1                         1, 1                       2, 1, 2                    4, 1, 2, 1, 4              8, 1, 2, 1, 4, 1, 2, 1, 8 16, 1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1, 16 MAPLE # In triangular form: seq(print(seq(gcd(k, 2^(n-1)), k=0..2^(n-1))), n=0..6); PROG (Haskell) a198069 n k = a198069_tabf !! n !! k a198069_row n = a198069_tabf !! n a198069_tabf = [0] : iterate f [1, 1] where    f (x:xs) = ys ++ tail (reverse ys) where ys = (2 * x) : xs -- Reinhard Zumkeller, May 26 2013 CROSSREFS Cf. A094373 (row lengths), A045623 (row sums), A011782 (edges and central terms). Sequence in context: A105245 A105246 A193829 * A300792 A132082 A129644 Adjacent sequences:  A198066 A198067 A198068 * A198070 A198071 A198072 KEYWORD nonn,tabf AUTHOR Peter Luschny, Nov 12 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 12:46 EDT 2019. Contains 321421 sequences. (Running on oeis4.)