login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A198068 Square array read by antidiagonals, n>=1, k>=1; T(n,k) is the number of primes which are prime to n and are not strong divisors of k. 0
0, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 1, 1, 1, 0, 2, 2, 2, 2, 1, 0, 1, 2, 2, 1, 1, 1, 0, 1, 2, 2, 2, 1, 2, 1, 0, 1, 1, 2, 2, 1, 2, 1, 1, 0, 2, 2, 2, 2, 3, 3, 1, 2, 1, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 0, 2, 2, 3, 2, 2, 3, 2, 2, 2, 2, 1, 0, 1, 2, 2, 2, 2, 2, 1, 2, 2 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,8

COMMENTS

We say d is a strong divisor of n iff d is a divisor of n and d > 1. Let omega(n) be the number of distinct primes dividing n. Then omega(n) = T(n,1) = T(n,n).

LINKS

Table of n, a(n) for n=1..87.

Peter Luschny, Euler's totient function

EXAMPLE

T(15, 22) = card({2,3,5,11}) = 4 because the coprimes of 15 are {1,2,4,7,8,11,13,14} and the strong divisors of 22 are {2,11,22}.

-

[x][1][2][3][4][5][6][7][8]

[1] 0, 0, 0, 0, 0, 0, 0, 0

[2] 1, 1, 1, 1, 1, 1, 1, 1

[3] 1, 2, 1, 2, 1, 2, 1, 2

[4] 1, 1, 2, 1, 1, 2, 1, 1

[5] 1, 2, 2, 2, 1, 3, 1, 2

[6] 2, 2, 2, 2, 3, 2, 2, 2

[7] 1, 2, 2, 2, 2, 3, 1, 2

[8] 1, 1, 2, 1, 2, 2, 2, 1

-

Triangle k=1..n, n>=1:

[1]           0

[2]          1, 1

[3]        1, 2, 1

[4]       1, 1, 2, 1

[5]     1, 2, 2, 2, 1

[6]    2, 2, 2, 2, 3, 2

[7]  1, 2, 2, 2, 2, 3, 1

[8] 1, 1, 2, 1, 2, 2, 2, 1

-

Triangle n=1..k, k>=1:

[1]           0

[2]          0, 1

[3]        0, 1, 1

[4]       0, 1, 2, 1

[5]     0, 1, 1, 1, 1

[6]    0, 1, 2, 2, 3, 2

[7]  0, 1, 1, 1, 1, 2, 1

[8] 0, 1, 2, 1, 2, 2, 2, 1

MAPLE

strongdivisors := n -> numtheory[divisors](n) minus {1}:

coprimes  := n -> select(k->igcd(k, n)=1, {$1..n}):

primes := n -> select(isprime, {$1..n});

T := (n, k) -> nops(primes(n) intersect ({$1..n} minus (coprimes(n) minus strongdivisors(k)))):

seq(seq(T(n-k+1, k), k=1..n), n=1..13);  # Square array by antidiagonals.

seq(print(seq(T(n, k), k=1..n)), n=1..8); # Lower triangle.

seq(print(seq(T(n, k), n=1..k)), k=1..8); # Upper triangle.

CROSSREFS

Cf. A000010, A001221, A193804, A193805, A198066, A198067.

Sequence in context: A106799 A212210 A127499 * A121361 A191907 A052343

Adjacent sequences:  A198065 A198066 A198067 * A198069 A198070 A198071

KEYWORD

nonn,tabl

AUTHOR

Peter Luschny, Nov 08 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 04:08 EST 2014. Contains 249867 sequences.