login
A197927
The number of isolated nodes in all labeled directed graphs (with self loops allowed) on n nodes.
2
0, 1, 4, 48, 2048, 327680, 201326592, 481036337152, 4503599627370496, 166020696663385964544, 24178516392292583494123520, 13944156602510523416463735259136, 31901471898837980949691369446728269824, 289909687580898100839964337544428699577745408
OFFSET
0,3
COMMENTS
Here, isolated means indegree = outdegree = 0.
a(n) is also the number of directed graphs on [n] (no self loops allowed, A053763) with a distinguished vertex of indegree 0. - Geoffrey Critzer, Apr 01 2023
FORMULA
E.g.f.: x*A(x) where A(x) = Sum_{n>=0} 2^(n^2)*x^n/n!.
a(n) = n * 2^((n-1)^2) = n*A002416(n-1).
Sum_{n>=0} a(n)*z^n/B(n) = z*Sum_{n>=0} A053763(n)*z^n/B(n) where B(n) = n!*2^binomial(n,2). - Geoffrey Critzer, Apr 01 2023
MATHEMATICA
a = Sum[2^(n^2)x^n/n!, {n, 0, 20}]; Range[0, 12]! CoefficientList[Series[x a, {x, 0, 12}], x]
CROSSREFS
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Oct 19 2011
STATUS
approved