login
A197813
Decimal expansion of x<0 having x^2+x=4*cos(x).
3
1, 4, 2, 0, 7, 7, 6, 7, 7, 3, 1, 7, 1, 0, 0, 5, 2, 4, 9, 3, 2, 5, 0, 6, 6, 9, 4, 1, 6, 6, 1, 8, 4, 8, 8, 2, 4, 2, 4, 8, 8, 6, 0, 5, 3, 9, 6, 6, 9, 2, 4, 9, 9, 8, 8, 4, 6, 6, 5, 6, 1, 5, 0, 6, 6, 9, 5, 6, 8, 9, 4, 6, 7, 6, 7, 0, 2, 8, 3, 0, 1, 5, 3, 1, 9, 5, 3, 3, 8, 7, 0, 7, 8, 6, 5, 4, 5, 5, 6
OFFSET
1,2
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
negative: -1.420776773171005249325066941661848824...
positive: 1.0251191119924290148461985750057832515...
MATHEMATICA
a = 1; b = 1; c = 4;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -2, 1.5}]
r1 = x /. FindRoot[f[x] == g[x], {x, -1.5, -1.4}, WorkingPrecision -> 110]
RealDigits[r1] (* A197813 *)
r2 = x /. FindRoot[f[x] == g[x], {x, 1, 1.1}, WorkingPrecision -> 110]
RealDigits[r2] (* A197814 *)
CROSSREFS
Cf. A197737.
Sequence in context: A330578 A355289 A245970 * A200496 A058546 A196774
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 20 2011
STATUS
approved