

A197728


Decimal expansion of 3*Pi/(2 + 2*Pi).


2



1, 1, 3, 7, 8, 2, 0, 4, 8, 9, 4, 9, 2, 1, 6, 4, 2, 1, 8, 0, 1, 6, 6, 4, 6, 0, 3, 3, 5, 6, 7, 3, 3, 9, 2, 9, 6, 2, 0, 7, 6, 3, 9, 5, 4, 8, 4, 6, 0, 7, 9, 6, 4, 9, 5, 0, 0, 3, 4, 8, 2, 3, 2, 0, 6, 7, 3, 8, 2, 2, 2, 0, 5, 6, 5, 1, 4, 3, 6, 0, 6, 4, 4, 8, 0, 9, 4, 9, 7, 6, 1, 0, 2, 3, 0, 3, 3, 6, 5
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/3 and c=Pi/3; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.1378204894921642180166460335673392962076...


MATHEMATICA

b = 1/3; c = Pi/3;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 1.137, 1.138}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197728 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi/2}]


CROSSREFS

Cf. A197682.
Sequence in context: A258405 A064208 A078004 * A340315 A267501 A006834
Adjacent sequences: A197725 A197726 A197727 * A197729 A197730 A197731


KEYWORD

nonn,cons,changed


AUTHOR

Clark Kimberling, Oct 17 2011


STATUS

approved



