%I #10 Sep 30 2022 23:22:07
%S 7,5,8,5,4,6,9,9,2,9,9,4,7,7,6,1,4,5,3,4,4,4,3,0,6,8,9,0,4,4,8,9,2,8,
%T 6,4,1,3,8,4,2,6,3,6,5,6,4,0,5,3,0,9,9,6,6,6,8,9,8,8,2,1,3,7,8,2,5,4,
%U 8,1,3,7,1,0,0,9,5,7,3,7,6,3,2,0,6,3,3,1,7,4,0,1,5,3,5,5,7,7,2
%N Decimal expansion of Pi/(1 + Pi).
%C Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/2 and c=Pi/2; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e 0.7585469929947761453444306890448928641384...
%t b = 1/2; c = Pi/2;
%t t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .75, .76}]
%t N[Pi/(2*b + 2*c), 110]
%t RealDigits[%] (* A197726 *)
%t Simplify[Pi/(2*b + 2*c)]
%t Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 2}]
%o (PARI) 1/(1/Pi+1) \\ _Charles R Greathouse IV_, Sep 30 2022
%Y Cf. A197682.
%K nonn,cons
%O 0,1
%A _Clark Kimberling_, Oct 17 2011