|
|
A197726
|
|
Decimal expansion of pi/(1+pi).
|
|
4
|
|
|
7, 5, 8, 5, 4, 6, 9, 9, 2, 9, 9, 4, 7, 7, 6, 1, 4, 5, 3, 4, 4, 4, 3, 0, 6, 8, 9, 0, 4, 4, 8, 9, 2, 8, 6, 4, 1, 3, 8, 4, 2, 6, 3, 6, 5, 6, 4, 0, 5, 3, 0, 9, 9, 6, 6, 6, 8, 9, 8, 8, 2, 1, 3, 7, 8, 2, 5, 4, 8, 1, 3, 7, 1, 0, 0, 9, 5, 7, 3, 7, 6, 3, 2, 0, 6, 3, 3, 1, 7, 4, 0, 1, 5, 3, 5, 5, 7, 7, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Least x>0 such that sin(bx)=cos(cx) (and also sin(cx)=cos(bx)), where b=1/2 and c=pi/2; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
|
|
LINKS
|
Table of n, a(n) for n=0..98.
|
|
EXAMPLE
|
x=0.7585469929947761453444306890448928641384...
|
|
MATHEMATICA
|
b = 1/2; c = Pi/2;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .75, .76}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197726 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 2}]
|
|
CROSSREFS
|
Cf. A197682.
Sequence in context: A262899 A198922 A329810 * A153623 A242623 A081815
Adjacent sequences: A197723 A197724 A197725 * A197727 A197728 A197729
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Clark Kimberling, Oct 17 2011
|
|
STATUS
|
approved
|
|
|
|