login
Decimal expansion of Pi^2/(4 + Pi).
2

%I #12 Oct 01 2022 00:53:23

%S 1,3,8,1,9,8,9,2,6,7,6,3,6,0,2,2,7,4,2,1,0,4,5,5,7,8,8,5,2,2,4,6,4,9,

%T 3,4,9,0,0,0,4,1,9,6,2,6,4,2,4,3,4,8,8,5,5,9,1,1,1,4,5,1,1,9,8,0,4,4,

%U 5,5,5,5,3,9,5,0,5,9,6,6,0,7,8,8,0,6,3,2,9,9,3,5,9,4,4,1,1,7,2

%N Decimal expansion of Pi^2/(4 + Pi).

%C Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/2 and c=2/Pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%e 1.38198926763602274210455788522464934900041...

%t b = 1/2; c = 2/Pi;

%t t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 1.37, 1.39}]

%t N[Pi/(2*b + 2*c), 110]

%t RealDigits[%] (* A197725 *)

%t Simplify[Pi/(2*b + 2*c)]

%t Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 2.8}]

%t RealDigits[Pi^2/(4+Pi),10,120][[1]] (* _Harvey P. Dale_, Jul 01 2013 *)

%Y Cf. A197682.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Oct 17 2011