login
Decimal expansion of Pi^2/(2 + Pi).
2

%I #13 Mar 19 2023 09:35:39

%S 1,9,1,9,5,6,1,7,1,2,8,8,6,4,7,8,6,5,9,7,0,1,4,5,2,6,0,7,3,7,1,5,6,5,

%T 1,6,0,7,2,2,3,2,4,1,3,3,4,6,2,9,2,0,2,3,0,5,5,7,1,1,1,0,4,2,2,2,2,8,

%U 8,6,7,3,8,4,1,3,5,7,7,3,2,1,3,1,3,2,9,2,0,5,8,4,2,8,7,6,8,4,5

%N Decimal expansion of Pi^2/(2 + Pi).

%C Least x > 0 such that sin(b*x) = cos(c*x) (and also sin(c*x) = cos(b*x)), where b=1/2 and c=1/Pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%e 1.91956171288647865970145260737156516072232...

%t b = 1/2; c = 1/Pi;

%t t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 1.9, 1.92}]

%t N[Pi/(2*b + 2*c), 110]

%t RealDigits[%] (* A197724 *)

%t Simplify[Pi/(2*b + 2*c)]

%t Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 2.8}]

%t RealDigits[Pi^2/(2+Pi),10,120][[1]] (* _Harvey P. Dale_, Mar 19 2023 *)

%Y Cf. A197682.

%K nonn,cons

%O 1,2

%A _Clark Kimberling_, Oct 17 2011