

A197698


Decimal expansion of (pi^2)/(4+6*pi).


2



4, 3, 1, 9, 3, 8, 5, 6, 5, 2, 3, 8, 6, 3, 2, 8, 3, 3, 7, 0, 3, 5, 6, 8, 5, 6, 1, 1, 7, 1, 3, 6, 5, 4, 9, 7, 0, 2, 4, 0, 1, 3, 2, 0, 0, 1, 1, 7, 8, 4, 6, 7, 7, 3, 7, 1, 0, 9, 2, 4, 0, 3, 0, 7, 8, 8, 2, 5, 1, 4, 7, 0, 6, 9, 7, 2, 9, 1, 1, 5, 7, 9, 2, 1, 5, 3, 6, 4, 7, 0, 5, 5, 4, 5, 4, 0, 2, 1, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Least x>0 such that sin(bx)=cos(cx) (and also sin(cx)=cos(bx)), where b=3 and c=2/pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.


LINKS

Table of n, a(n) for n=0..98.


EXAMPLE

x=0.43193856523863283370356856117136549702401320011...


MATHEMATICA

b = 3; c = 2/Pi;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .4, .5}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197698 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 2.5}]


CROSSREFS

Cf. A197682.
Sequence in context: A305621 A196841 A165732 * A193011 A214859 A123160
Adjacent sequences: A197695 A197696 A197697 * A197699 A197700 A197701


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 17 2011


STATUS

approved



