The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197698 Decimal expansion of (pi^2)/(4+6*pi). 2
 4, 3, 1, 9, 3, 8, 5, 6, 5, 2, 3, 8, 6, 3, 2, 8, 3, 3, 7, 0, 3, 5, 6, 8, 5, 6, 1, 1, 7, 1, 3, 6, 5, 4, 9, 7, 0, 2, 4, 0, 1, 3, 2, 0, 0, 1, 1, 7, 8, 4, 6, 7, 7, 3, 7, 1, 0, 9, 2, 4, 0, 3, 0, 7, 8, 8, 2, 5, 1, 4, 7, 0, 6, 9, 7, 2, 9, 1, 1, 5, 7, 9, 2, 1, 5, 3, 6, 4, 7, 0, 5, 5, 4, 5, 4, 0, 2, 1, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Least x>0 such that sin(bx)=cos(cx) (and also sin(cx)=cos(bx)), where b=3 and c=2/pi; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences. LINKS EXAMPLE x=0.43193856523863283370356856117136549702401320011... MATHEMATICA b = 3; c = 2/Pi; t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .4, .5}] N[Pi/(2*b + 2*c), 110] RealDigits[%]   (* A197698 *) Simplify[Pi/(2*b + 2*c)] Plot[{Sin[b*x], Cos[c*x]}, {x, 0, 2.5}] CROSSREFS Cf. A197682. Sequence in context: A305621 A196841 A165732 * A193011 A214859 A123160 Adjacent sequences:  A197695 A197696 A197697 * A197699 A197700 A197701 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 17 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 10 08:28 EDT 2020. Contains 336368 sequences. (Running on oeis4.)