login
A197689
Decimal expansion of 3*Pi/(6 + Pi).
2
1, 0, 3, 0, 9, 7, 7, 6, 7, 7, 2, 9, 4, 3, 8, 0, 7, 5, 7, 6, 4, 9, 5, 5, 9, 1, 2, 4, 6, 8, 0, 7, 1, 8, 3, 7, 5, 4, 9, 8, 3, 5, 4, 0, 3, 2, 9, 5, 0, 6, 7, 4, 4, 5, 0, 1, 9, 1, 0, 8, 3, 0, 4, 3, 9, 6, 1, 8, 9, 6, 6, 2, 8, 3, 9, 3, 7, 9, 2, 2, 1, 1, 1, 7, 7, 2, 6, 6, 1, 1, 0, 2, 5, 3, 7, 0, 4, 6, 6
OFFSET
1,3
COMMENTS
Least x > 0 such that sin(b*x)=cos(c*x) (and also sin(c*x)=cos(b*x)), where b=1 and c=Pi/6; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
EXAMPLE
x=1.030977677294380757649559124680718375498354...
MATHEMATICA
b = 1; c = Pi/6;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, 1, 1.05}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197689 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi/2}]
CROSSREFS
Cf. A197682.
Sequence in context: A199402 A011083 A321463 * A201942 A181831 A241536
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 17 2011
STATUS
approved