login
A197687
Decimal expansion of 3*Pi/(6 + 2*Pi).
2
7, 6, 7, 2, 9, 1, 0, 3, 4, 4, 5, 6, 7, 1, 7, 6, 2, 1, 9, 7, 8, 4, 3, 4, 7, 0, 3, 2, 0, 7, 5, 7, 0, 0, 7, 2, 5, 6, 7, 3, 4, 6, 4, 6, 7, 8, 7, 2, 0, 3, 4, 6, 2, 4, 1, 3, 1, 7, 5, 3, 7, 5, 1, 2, 1, 0, 5, 9, 2, 5, 5, 4, 2, 1, 4, 8, 7, 5, 6, 6, 3, 0, 4, 1, 5, 6, 9, 0, 7, 2, 5, 6, 4, 7, 4, 1, 3, 1, 4
OFFSET
0,1
COMMENTS
Least x > 0 such that sin(b*x)=cos(c*x) (and also sin(c*x)=cos(b*x)), where b=1 and c=Pi/3; see the Mathematica program for a graph and A197682 for a discussion and guide to related sequences.
EXAMPLE
x=0.7672910344567176219784347032075700725673464...
MATHEMATICA
b = 1; c = Pi/3;
t = x /. FindRoot[Sin[b*x] == Cos[c*x], {x, .7, .8}]
N[Pi/(2*b + 2*c), 110]
RealDigits[%] (* A197687 *)
Simplify[Pi/(2*b + 2*c)]
Plot[{Sin[b*x], Cos[c*x]}, {x, 0, Pi/2}]
CROSSREFS
Cf. A197682.
Sequence in context: A242977 A247314 A257395 * A239341 A239606 A291423
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 17 2011
STATUS
approved