login
A197579
Decimal expansion of least x > 0 having cos(Pi*x/2) = cos(x)^2.
2
1, 2, 6, 9, 3, 2, 8, 1, 6, 7, 9, 5, 3, 9, 7, 0, 8, 4, 8, 9, 3, 6, 1, 8, 5, 1, 4, 9, 7, 0, 3, 7, 8, 8, 8, 0, 7, 3, 9, 7, 8, 7, 1, 2, 7, 7, 3, 3, 8, 0, 8, 6, 1, 0, 1, 4, 5, 1, 6, 8, 9, 1, 8, 2, 8, 8, 6, 5, 8, 8, 5, 6, 9, 3, 3, 3, 8, 3, 0, 9, 8, 2, 0, 7, 6, 8, 2, 5, 1, 7, 6, 6, 8, 5, 1, 6, 9, 9, 7
OFFSET
1,2
COMMENTS
The Mathematica program includes a graph. See A197476 for a guide for the least x > 0 satisfying cos(b*x) = cos(c*x)^2 for selected b and c.
EXAMPLE
x=1.26932816795397084893618514970378880739787127...
MATHEMATICA
b = Pi/2; c = 1; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 1.2, 1.3}, WorkingPrecision -> 200]
RealDigits[t] (* A197579 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 2}]
CROSSREFS
Cf. A197133.
Sequence in context: A290409 A269558 A195396 * A179275 A215498 A104752
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 16 2011
STATUS
approved