login
A197573
Decimal expansion of least x > 0 having cos(x) = cos(3*Pi*x/2)^2.
2
5, 0, 3, 6, 8, 1, 8, 0, 7, 6, 2, 5, 6, 5, 8, 3, 1, 1, 1, 5, 0, 3, 2, 4, 8, 1, 5, 7, 1, 0, 4, 9, 1, 4, 5, 5, 6, 6, 5, 7, 0, 7, 0, 6, 0, 9, 9, 5, 1, 3, 3, 9, 8, 4, 0, 9, 7, 3, 8, 1, 7, 2, 1, 2, 8, 3, 1, 5, 0, 1, 9, 9, 3, 5, 3, 0, 1, 9, 4, 5, 9, 7, 2, 9, 5, 0, 2, 5, 8, 6, 3, 0, 2, 3, 5, 0, 5, 7, 2
OFFSET
0,1
COMMENTS
The Mathematica program includes a graph. See A197476 for a guide for the least x > 0 satisfying cos(b*x) = cos(c*x)^2 for selected b and c.
EXAMPLE
x=0.5036818076256583111503248157104914556657070609...
MATHEMATICA
b = 1; c = 3*Pi/2; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .5, .51}, WorkingPrecision -> 200]
RealDigits[t] (* A197573 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi/4}]
CROSSREFS
Cf. A197133.
Sequence in context: A326054 A062526 A264785 * A019947 A193182 A139399
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 16 2011
STATUS
approved