login
A197572
Decimal expansion of least x > 0 having cos(x) = cos(2*Pi*x)^2.
2
3, 9, 3, 6, 9, 6, 4, 2, 4, 7, 6, 1, 2, 8, 3, 7, 4, 1, 8, 8, 3, 3, 5, 3, 0, 4, 7, 0, 0, 9, 7, 7, 6, 6, 0, 0, 4, 3, 8, 5, 1, 3, 2, 5, 9, 6, 8, 3, 3, 0, 3, 9, 9, 7, 6, 6, 8, 4, 1, 5, 4, 8, 2, 1, 1, 0, 7, 2, 5, 1, 2, 5, 2, 0, 4, 9, 3, 6, 9, 8, 0, 5, 0, 0, 0, 3, 6, 5, 7, 8, 2, 8, 9, 6, 5, 9, 3, 5, 0
OFFSET
0,1
COMMENTS
The Mathematica program includes a graph. See A197476 for a guide for the least x > 0 satisfying cos(b*x) = cos(c*x)^2 for selected b and c.
EXAMPLE
x=0.3936964247612837418833530470097766004385132...
MATHEMATICA
b = 1; c = 2*Pi; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .39, .4}, WorkingPrecision -> 200]
RealDigits[t] (* A197572 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, .5}]
CROSSREFS
Cf. A197133.
Sequence in context: A010632 A340036 A195292 * A224233 A021258 A200607
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 16 2011
STATUS
approved