login
T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 4,3,0,2,2 for x=0,1,2,3,4
7

%I #5 Mar 31 2012 12:36:30

%S 1,1,1,2,7,2,3,10,10,3,5,23,35,23,5,8,57,106,106,57,8,13,122,410,927,

%T 410,122,13,21,275,1479,4055,4055,1479,275,21,34,623,5280,23710,36877,

%U 23710,5280,623,34,55,1394,18882,139477,310658,310658,139477,18882,1394,55,89

%N T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 4,3,0,2,2 for x=0,1,2,3,4

%C Every 0 is next to 0 4's, every 1 is next to 1 3's, every 2 is next to 2 0's, every 3 is next to 3 2's, every 4 is next to 4 2's

%C Table starts

%C ..1....1......2........3..........5............8.............13

%C ..1....7.....10.......23.........57..........122............275

%C ..2...10.....35......106........410.........1479...........5280

%C ..3...23....106......927.......4055........23710.........139477

%C ..5...57....410.....4055......36877.......310658........2817383

%C ..8..122...1479....23710.....310658......4706533.......64257852

%C .13..275...5280...139477....2817383.....64257852.....1435938748

%C .21..623..18882...791905...25115833....901951086....31372791803

%C .34.1394..67751..4560098..223137190..12684564675...696517116880

%C .55.3133.242440.25954025.1986928549.178322495650.15437789226545

%H R. H. Hardin, <a href="/A197561/b197561.txt">Table of n, a(n) for n = 1..180</a>

%e Some solutions containing all values 0 to 4 for n=6 k=4

%e ..0..2..0..0....0..0..2..0....2..0..0..0....0..0..2..0....0..0..2..0

%e ..2..4..2..0....0..2..4..2....0..2..2..2....2..2..4..2....0..2..4..2

%e ..0..2..3..1....2..4..2..0....0..2..0..0....0..0..2..0....1..3..2..0

%e ..2..0..2..0....0..2..0..0....1..3..2..0....2..1..3..2....0..2..0..0

%e ..2..0..2..0....1..3..2..2....0..2..4..2....0..2..2..0....2..3..1..0

%e ..0..0..2..0....0..2..0..0....2..0..2..0....2..0..0..0....0..2..0..2

%Y Column 1 is A000045

%Y Column 2 is A196316

%K nonn,tabl

%O 1,4

%A _R. H. Hardin_ Oct 16 2011