login
A197522
Decimal expansion of least x > 0 having cos(x) = cos(4*Pi*x)^2.
2
2, 1, 2, 0, 7, 1, 0, 7, 1, 9, 1, 8, 1, 0, 4, 2, 8, 2, 0, 4, 4, 3, 5, 1, 1, 7, 5, 6, 9, 4, 2, 8, 3, 5, 2, 2, 5, 6, 8, 5, 2, 0, 3, 0, 5, 0, 9, 1, 1, 6, 4, 7, 9, 0, 9, 2, 9, 7, 8, 5, 0, 4, 1, 1, 7, 5, 6, 7, 9, 8, 7, 1, 8, 7, 3, 8, 4, 5, 8, 1, 6, 1, 5, 5, 0, 9, 7, 0, 5, 7, 4, 7, 6, 0, 0, 1, 8, 3, 7
OFFSET
0,1
COMMENTS
The Mathematica program includes a graph. See A197476 for a guide for the least x > 0 satisfying cos(b*x) = cos(c*x)^2 for selected b and c.
EXAMPLE
x=0.212071071918104282044351175694283522568520305091...
MATHEMATICA
b = 1; c = 4*Pi; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .21, .22}, WorkingPrecision -> 200]
RealDigits[t] (* A197522 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, .5}]
CROSSREFS
Cf. A197133.
Sequence in context: A055135 A334873 A327359 * A121310 A356919 A278158
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 16 2011
STATUS
approved