

A197512


Decimal expansion of least x>0 having cos(2x)=(cos pi*x/3)^2.


2



3, 0, 8, 1, 3, 7, 3, 5, 9, 9, 2, 8, 2, 3, 2, 6, 4, 6, 2, 3, 1, 7, 7, 0, 5, 6, 9, 9, 4, 5, 5, 4, 1, 1, 1, 9, 3, 9, 0, 5, 4, 8, 4, 3, 4, 9, 6, 7, 8, 8, 9, 4, 1, 4, 9, 5, 9, 3, 0, 9, 7, 0, 7, 6, 0, 3, 0, 2, 3, 7, 2, 0, 2, 2, 2, 4, 8, 1, 5, 5, 7, 2, 2, 9, 9, 5, 9, 9, 0, 2, 1, 0, 2, 1, 6, 1, 6, 9, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The Mathematica program includes a graph. See A197476 for a guide for the least x>0 satisfying cos(b*x)=(cos(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=3.0813735992823264623177056994554111...


MATHEMATICA

b = 2; c = Pi/3; f[x_] := Cos[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 3, 3.1}, WorkingPrecision > 110]
RealDigits[t] (* A197512 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, 4}]


CROSSREFS

Cf. A197476.
Sequence in context: A147600 A022895 A197416 * A232272 A186744 A200507
Adjacent sequences: A197509 A197510 A197511 * A197513 A197514 A197515


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 16 2011


STATUS

approved



