

A197495


Decimal expansion of least x>0 having cos(x)=(cos pi*x/4)^2.


2



1, 2, 7, 8, 3, 9, 8, 3, 8, 5, 6, 7, 4, 4, 4, 9, 6, 8, 0, 8, 8, 7, 2, 9, 5, 7, 3, 2, 3, 0, 6, 8, 3, 6, 5, 7, 6, 6, 6, 8, 6, 4, 4, 2, 3, 6, 3, 9, 9, 7, 2, 8, 3, 4, 7, 5, 1, 2, 7, 9, 7, 8, 0, 9, 3, 3, 7, 8, 0, 5, 1, 8, 8, 6, 9, 9, 2, 4, 1, 1, 7, 0, 9, 4, 4, 9, 7, 8, 0, 2, 3, 2, 1, 9, 3, 7, 1, 7, 9
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

The Mathematica program includes a graph. See A197476 for a guide for the least x>0 satisfying cos(b*x)=(cos(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=1..99.


EXAMPLE

x=1.2783983856744496808872957323068365766686442...


MATHEMATICA

b = 1; c = Pi/4; f[x_] := Cos[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 1.27, 1.29},
WorkingPrecision > 110]
RealDigits[t] (* A197495 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi/2}]


CROSSREFS

Cf. A197476.
Sequence in context: A198815 A011053 A094216 * A102098 A316252 A202355
Adjacent sequences: A197492 A197493 A197494 * A197496 A197497 A197498


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 15 2011


STATUS

approved



