This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197488 Decimal expansion of least x>0 having cos(6x)=(cos 4x)^2. 3
 9, 2, 1, 8, 8, 4, 0, 8, 8, 0, 1, 5, 8, 6, 0, 7, 8, 4, 8, 1, 9, 9, 6, 9, 2, 4, 8, 8, 6, 1, 8, 1, 0, 6, 3, 6, 5, 7, 2, 9, 9, 5, 6, 7, 5, 8, 2, 6, 9, 9, 6, 5, 4, 6, 6, 2, 7, 1, 3, 6, 1, 5, 3, 8, 1, 9, 1, 2, 2, 0, 6, 5, 0, 7, 6, 6, 6, 2, 6, 9, 4, 8, 7, 4, 9, 7, 0, 9, 4, 9, 5, 5, 1, 4, 9, 9, 5, 5, 1 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS The Mathematica program includes a graph.  See A197476 for a guide for the least x>0 satisfying cos(b*x)=(cos(c*x))^2 for selected b and c. LINKS EXAMPLE x=0.9218840880158607848199692488618106365729956... MATHEMATICA b = 6; c = 4; f[x_] := Cos[x] t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .92, .93}, WorkingPrecision -> 100] RealDigits[t] (* A197488 *) Plot[{f[b*x], f[c*x]^2}, {x, 0, 1}] RealDigits[ ArcCos[ Root[ -2 + 8#^2 - 6#^4 + #^6 & , 5]/2], 10, 99] // First (* Jean-François Alcover, Feb 19 2013 *) CROSSREFS Cf. A197476. Sequence in context: A225446 A154993 * A197757 A010536 A151898 A080994 Adjacent sequences:  A197485 A197486 A197487 * A197489 A197490 A197491 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 15 2011 EXTENSIONS Digits from a(92) on corrected by Jean-François Alcover, Feb 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .