This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197419 Triangle with the numerator of the coefficient [x^k] of the second order Bernoulli polynomial B_n^(2)(x) in row n, column 0<=k<=n. 3
 1, -1, 1, 5, -2, 1, -1, 5, -3, 1, 1, -2, 5, -4, 1, 1, 1, -5, 25, -5, 1, -5, 1, 3, -10, 25, -6, 1, -1, -5, 7, 7, -35, 35, -7, 1, 7, -4, -10, 28, 7, -28, 70, -8, 1, 3, 21, -6, -10, 21, 63, -42, 30, -9, 1, -15, 3, 21, -20, -25, 42, 21, -60, 75, -10, 1, -5, -15, 33, 77, -55, -55, 77, 33, -165, 275, -11, 1, 7601, -10, -45, 66, 231, -132, -110, 132, 99, -110, 55, -12, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS The a-th order Bernoulli polynomials are defined via the exponential generating function (t/(exp t -1))^a*exp(x*t) = sum_{n>=0} B_n^(a)(x) * t^n/n!. The current triangular array shows the coefficient [x^k] of B_n^(2)(x), i.e. the expansion coefficients in rising powers of the polynomial of x with a=2. P(n,x) = 2*sum(m=0..n-1, binomial(n,m)*sum(k=1..n-m, stirling2(n-m,k) * stirling1(2+k,2)/((k+1)*(k+2))))*x^m+x^n. - Vladimir Kruchinin, Oct 23 2011] LINKS R. Dere, Y. Simsek, Bernoulli type polynomials on Umbral Algebra, arXiv:1110.1484 [math.CA] V. Kruchinin, D. Kruchinin, Application of a composition of generating functions for obtaining explicit formulas of polynomials, arXiv: 1211.0099 FORMULA T(n,m) = sum(2*C(n,m)*sum(k=1..n-m, stirling2(n-m,k)*stirling1(2+k,2)/ ((k+1)*(2+k)))), m

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified May 24 06:29 EDT 2013. Contains 225617 sequences.