login
T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 3,3,2,1,2 for x=0,1,2,3,4
7

%I #5 Mar 31 2012 12:36:29

%S 1,1,1,1,2,1,1,5,5,1,1,8,11,8,1,1,18,38,38,18,1,1,37,103,167,103,37,1,

%T 1,73,297,681,681,297,73,1,1,151,856,2864,4005,2864,856,151,1,1,306,

%U 2458,12148,25336,25336,12148,2458,306,1,1,621,7045,51480,159818,238206

%N T(n,k)=Number of nXk 0..4 arrays with each element x equal to the number of its horizontal and vertical neighbors equal to 3,3,2,1,2 for x=0,1,2,3,4

%C Every 0 is next to 0 3's, every 1 is next to 1 3's, every 2 is next to 2 2's, every 3 is next to 3 1's, every 4 is next to 4 2's

%C Table starts

%C .1...1.....1......1........1..........1...........1.............1

%C .1...2.....5......8.......18.........37..........73...........151

%C .1...5....11.....38......103........297.........856..........2458

%C .1...8....38....167......681.......2864.......12148.........51480

%C .1..18...103....681.....4005......25336......159818........998934

%C .1..37...297...2864....25336.....238206.....2218128......20616615

%C .1..73...856..12148...159818....2218128....30771790.....425710602

%C .1.151..2458..51480...998934...20616615...425710602....8790242932

%C .1.306..7045.217587..6247167..191742443..5901225887..181780508322

%C .1.621.20229.919656.39159520.1785824065.81906890563.3765721431500

%H R. H. Hardin, <a href="/A197342/b197342.txt">Table of n, a(n) for n = 1..199</a>

%e Some solutions containing all values 0 to 4 for n=6 k=4

%e ..0..2..2..2....0..2..2..2....2..2..2..0....2..2..2..0....1..3..1..0

%e ..0..2..4..2....2..2..4..2....2..4..2..0....2..4..2..0....0..1..0..0

%e ..0..2..2..2....2..0..2..2....2..2..2..0....2..2..2..0....2..2..2..0

%e ..0..0..0..1....2..2..2..1....1..3..1..0....1..0..0..0....2..4..2..0

%e ..0..0..1..3....0..1..1..3....0..1..2..2....3..1..1..0....2..2..2..0

%e ..0..0..0..1....1..3..1..1....0..0..2..2....1..1..3..1....0..0..0..0

%Y Column 2 is A197211

%K nonn,tabl

%O 1,5

%A _R. H. Hardin_ Oct 13 2011