%I #5 Mar 31 2012 12:36:29
%S 1,8,38,167,681,2864,12148,51480,217587,919656,3889592,16451263,
%T 69570928,294209541,1244221402,5261851987,22252448435,94105875249,
%U 397975165117,1683043391582,7117616634217,30100509329656,127295517065791
%N Number of nX4 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 3,3,2,1,2 for x=0,1,2,3,4
%C Every 0 is next to 0 3's, every 1 is next to 1 3's, every 2 is next to 2 2's, every 3 is next to 3 1's, every 4 is next to 4 2's
%C Column 4 of A197342
%H R. H. Hardin, <a href="/A197338/b197338.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) +20*a(n-3) +4*a(n-4) +35*a(n-5) -46*a(n-6) -60*a(n-7) -128*a(n-8) -147*a(n-9) -159*a(n-10) -62*a(n-11) +278*a(n-12) +293*a(n-13) +293*a(n-14) +171*a(n-15) +423*a(n-16) +459*a(n-17) -301*a(n-18) +83*a(n-19) +364*a(n-20) +29*a(n-21) -778*a(n-22) -694*a(n-23) -591*a(n-24) -383*a(n-25) -31*a(n-26) +509*a(n-27) +628*a(n-28) +202*a(n-29) -163*a(n-30) -154*a(n-31) -32*a(n-32) +16*a(n-33) +8*a(n-34)
%e Some solutions containing all values 0 to 4 for n=5
%e ..2..2..2..0....0..0..1..0....0..1..0..0....1..1..3..1....0..0..1..0
%e ..2..4..2..0....0..1..3..1....1..3..1..0....3..1..1..0....0..1..3..1
%e ..2..2..2..1....2..2..2..0....0..2..2..2....1..2..2..2....0..2..2..2
%e ..0..1..1..3....2..4..2..0....0..2..4..2....0..2..4..2....0..2..4..2
%e ..1..3..1..1....2..2..2..0....0..2..2..2....0..2..2..2....0..2..2..2
%K nonn
%O 1,2
%A _R. H. Hardin_ Oct 13 2011