login
A197335
Decimal expansion of least x > 0 having cos(x) = cos(3*Pi*x)^2.
2
3, 0, 9, 9, 8, 1, 4, 8, 9, 0, 7, 0, 1, 3, 6, 9, 1, 0, 3, 1, 8, 0, 1, 6, 2, 2, 6, 8, 6, 0, 1, 8, 7, 1, 9, 4, 6, 5, 0, 1, 4, 6, 2, 3, 5, 1, 1, 5, 7, 2, 9, 0, 4, 4, 3, 3, 8, 1, 7, 2, 9, 0, 6, 4, 4, 5, 5, 3, 0, 9, 9, 9, 2, 5, 5, 3, 2, 3, 6, 5, 3, 2, 4, 1, 2, 1, 5, 3, 3, 6, 4, 8, 5, 9, 6, 7, 7, 2, 8
OFFSET
0,1
COMMENTS
The Mathematica program includes a graph. See A197476 for a guide for the least x > 0 satisfying cos(b*x) = cos(c*x)^2 for selected b and c.
EXAMPLE
x=0.309981489070136910318016226860187194650...
MATHEMATICA
b = 1; c = 3 Pi; f[x_] := Cos[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, 3, .31}, WorkingPrecision -> 110]
RealDigits[t] (* A197335 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi/4}]
CROSSREFS
Cf. A197476.
Sequence in context: A181831 A241536 A080407 * A248885 A118534 A187427
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 15 2011
STATUS
approved