

A197270


Decimal expansion of least x>0 having sin(4x)=(sin 6x)^2.


1



3, 0, 3, 8, 9, 0, 4, 1, 6, 4, 3, 4, 4, 2, 6, 1, 1, 6, 8, 6, 8, 0, 6, 5, 3, 3, 9, 5, 8, 6, 5, 2, 0, 4, 0, 2, 9, 4, 0, 7, 7, 8, 4, 6, 0, 7, 2, 6, 8, 8, 6, 8, 2, 0, 5, 2, 6, 4, 5, 7, 8, 4, 0, 0, 4, 7, 6, 0, 3, 5, 2, 6, 4, 5, 0, 0, 7, 5, 7, 2, 5, 9, 6, 5, 9, 4, 1, 5, 5, 4, 7, 6, 1, 0, 6, 9, 6, 2, 2, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The Mathematica program includes a graph. See A197133 for a guide to least x>0 satisfying sin(b*x)=(sin(c*x))^2 for selected b and c.


LINKS

Table of n, a(n) for n=0..99.


EXAMPLE

x=0.3038904164344261168680653395865204029407784...


MATHEMATICA

b = 4; c = 6; f[x_] := Sin[x]
t = x /. FindRoot[f[b*x] == f[c*x]^2, {x, .3, .5}, WorkingPrecision > 100]
RealDigits[t] (* A197270 *)
Plot[{f[b*x], f[c*x]^2}, {x, 0, Pi/4}]


CROSSREFS

Cf. A197133.
Sequence in context: A154853 A139214 A010030 * A117940 A099093 A137339
Adjacent sequences: A197267 A197268 A197269 * A197271 A197272 A197273


KEYWORD

nonn,cons


AUTHOR

Clark Kimberling, Oct 12 2011


STATUS

approved



