login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A197151 Decimal expansion of the shortest distance from the x axis through (2,1) to the line y=3x. 2
3, 1, 6, 0, 9, 4, 6, 9, 7, 3, 0, 6, 5, 4, 4, 6, 5, 0, 6, 1, 3, 5, 8, 4, 4, 2, 7, 9, 9, 1, 7, 5, 8, 5, 1, 2, 1, 8, 2, 1, 5, 9, 8, 7, 5, 0, 7, 7, 8, 1, 5, 1, 2, 0, 1, 1, 2, 2, 6, 6, 0, 0, 3, 9, 0, 9, 7, 3, 9, 2, 1, 0, 8, 9, 2, 2, 3, 1, 0, 1, 2, 3, 7, 1, 5, 4, 0, 1, 3, 3, 7, 8, 3, 3, 5, 1, 0, 7, 9, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T.  For discussions and guides to related sequences, see A197032, A197008 and A195284.

LINKS

Table of n, a(n) for n=1..100.

EXAMPLE

length of Philo line:  3.160946973065...

endpoint on x axis:    (2.85106, 0); see A197150

endpoint on line y=3x: (0.802397, 2.40719)

MATHEMATICA

f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2;

g[t_] := D[f[t], t]; Factor[g[t]]

p[t_] :=  h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3

m = 3; h = 2; k = 1; (* slope m, point (h, k) *)

t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100]

RealDigits[t]  (* A197150 *)

{N[t], 0} (* endpoint on x axis *)

{N[k*t/(k + m*t - m*h)],

N[m*k*t/(k + m*t - m*h)]} (* endpt on line y=3x *)

d = N[Sqrt[f[t]], 100]

RealDigits[d]  (* A197151 *)

Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 3}],

ContourPlot[(x - h)^2 + (y - k)^2 == .002, {x, 0, 4}, {y, 0, 3}],

PlotRange -> {0, 2.5}, AspectRatio -> Automatic]

CROSSREFS

Cf. A197032, A197150, A197008, A195284.

Sequence in context: A011002 A298241 A113817 * A083238 A117782 A317855

Adjacent sequences:  A197148 A197149 A197150 * A197152 A197153 A197154

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Oct 11 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 13:03 EST 2020. Contains 332076 sequences. (Running on oeis4.)