This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A197148 Decimal expansion of the x-intercept of the shortest segment from the x axis through (1,1) to the line y=3x. 2
 1, 6, 0, 4, 7, 9, 3, 6, 1, 8, 4, 6, 2, 1, 3, 9, 9, 0, 7, 3, 7, 8, 3, 1, 7, 9, 5, 0, 7, 1, 7, 9, 6, 1, 8, 4, 6, 7, 1, 5, 4, 4, 9, 2, 1, 9, 9, 9, 1, 2, 8, 6, 0, 7, 7, 8, 6, 3, 6, 2, 9, 2, 2, 1, 4, 9, 2, 1, 6, 3, 7, 2, 6, 1, 9, 1, 2, 6, 0, 4, 2, 1, 6, 6, 7, 9, 9, 7, 0, 2, 2, 8, 4, 7, 0, 1, 4, 7, 7, 2 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The shortest segment from one side of an angle T through a point P inside T is called the Philo line of P in T.  For discussions and guides to related sequences, see A197032, A197008 and A195284. LINKS EXAMPLE length of Philo line:  1.999158399580...; see A197149 endpoint on x axis:    (1.60479, 0) endpoint on line y=3x: (0.570212, 1.71064) MATHEMATICA f[t_] := (t - k*t/(k + m*t - m*h))^2 + (m*k*t/(k + m*t - m*h))^2; g[t_] := D[f[t], t]; Factor[g[t]] p[t_] := h^2 k + k^3 - h^3 m - h k^2 m - 3 h k t + 3 h^2 m t + 2 k t^2 - 3 h m t^2 + m t^3 m = 3; h = 1; k = 1; (* slope m, point (h, k) *) t = t1 /. FindRoot[p[t1] == 0, {t1, 1, 2}, WorkingPrecision -> 100] RealDigits[t] (* A197148 *) {N[t], 0} (* endpoint on x axis *) {N[k*t/(k + m*t - m*h)], N[m*k*t/(k + m*t - m*h)]} (* endpt on line y=3x *) d = N[Sqrt[f[t]], 100] RealDigits[d]  (* A197149 *) Show[Plot[{k*(x - t)/(h - t), m*x}, {x, 0, 2}], ContourPlot[(x - h)^2 + (y - k)^2 == .001, {x, 0, 4}, {y, 0, 3}], PlotRange -> {0, 2}, AspectRatio -> Automatic] CROSSREFS Cf. A197032, A197149, A197008, A195284. Sequence in context: A073010 A100120 A132709 * A196623 A265275 A113024 Adjacent sequences:  A197145 A197146 A197147 * A197149 A197150 A197151 KEYWORD nonn,cons AUTHOR Clark Kimberling, Oct 11 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.